

Une initiative de l'Organisation des Etats d'Afrique, des Caraïbes et du Pacifique financée par l'Union européenne

Climate Forecasting Toolbox (CFT) Zoning, Forecasting and Verification

STEP 4 of 9

Thembani MOITLHOBOGI (Independent CFT Developer)

And

Dr. Pierre KAMSU TAMO (Senior Forecaster - ACMAD) Sunshine M. GAMEDZE (CFT Climate & Climate Expert - ACMAD) Hubert KABENGELA NYAMABU (Climate Expert - ACMAD)

> **PRESAGG TRAINING WORKSHOP** 14 to 20 February, Online

Introduction

The Climate Forecasting Toolbox (CFT) is a fork from the former SADC Climate Forecasting Tool, and has been further developed with new features and bug fixes.

The major version of the CFT follows the major Python version used (currently v3).

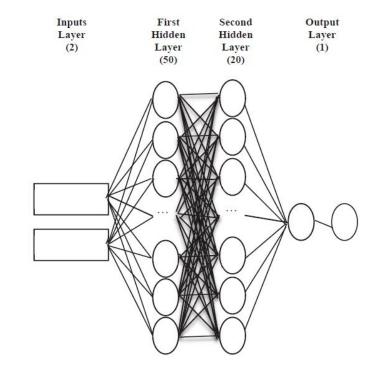
The latest version of CFT is available from Github where the source code is maintained: <u>https://github.com/taxmanyana/cft/tags</u>

Features (2 / 2)

The CFT v3.1.0 has the following main features:

- ➤ Create homogenous zones for a country/region
- Forecast based on existing indices (CSV/Text) data, or can detect high correlation areas from gridded data (NetCDF) to use as input
- Multiple Linear Regression and Artificial Intelligence (MLP) statistical forecasting methods
- Predictand in NetCDF and CSV format
- Forecast verification using predictand data in NetCDF format

Features (2 / 2)


The CFT, through class **MLPRegressor** (from sklearn.neural_network Python module), has a component of Artificial Intelligence in the form of a multi-layer perceptron (MLP) that is a feedforward artificial neural network with backpropagation.

The advantages of MLP are:

- Capability to learn non-linear models
- Capability to learn models in real-time (on-line learning)

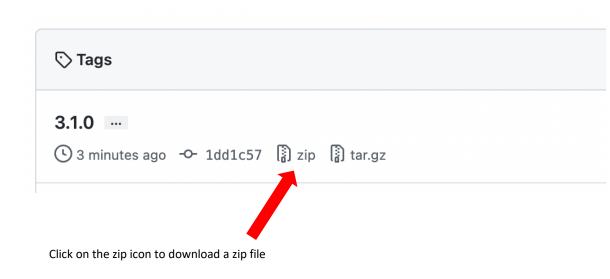
The disadvantages of MLP include:

- MLP with hidden layers have a non-convex loss function where there exists more than one local minimum. Therefore different random weight initializations can lead to different validation accuracy
- MLP requires tuning a number of hyper-parameters such as the number of hidden neurons, layers, and iterations
- MLP is sensitive to feature scaling

CFT uses the hyperbolic tan function 'tanh' as the activation function, 'lbfgs' (an optimizer in the family of quasi-Newton methods) as the solver, and maximum iterations set at 700.

Installation (1 / 4)

The installation instructions for different platforms are provided in the **README.md** file which is part of the installation package.


For Windows, CFT can make use of QGIS v3.16 installed in the system to satisfy the required dependencies.

Follow the following steps to install CFT...

Installation (2 / 4)

The installation instructions

Download the latest release from the link below: <u>https://github.com/taxmanyana/cft/tags</u>

Copy the downloaded zip file (e.g. cft-3.1.0.zip) to an installation directory, and unzip the file.

Installation (3 / 4)

The installation instructions

To update the required Python modules on QGIS, right-click on install-qgis-modules.bat and select Run as administrator

Name	Date modified	Туре	Size
data	23/01/2022 22:13	File folder	
styles	23/01/2022 22:13	File folder	
🗋 cft.py	23/01/2022 22:13	PY File	41 KB
🗋 cft.ui	23/01/2022 22:13	Ul File	24 KB
🗋 cft_mpi.py	23/01/2022 22:13	PY File	27 KB
🗋 cft_ubuntu.sh	23/01/2022 22:13	SH File	1 KB
💿 debug_cft.bat	23/01/2022 22:13	Windows Batch File	2 KB
🚳 debug_zoning.bat	23/01/2022 22:13	Windows Batch File	2 KB
🗋 functions.py	23/01/2022 22:13	PY File	91 KB
📄 install-cft-linux.sh	23/01/2022 22:13	SH File	6 KB
📋 install-cft-ubuntu.sh	23/01/2022 22:13	SH File	2 KB
install-qgis-modules bat	23/01/2022 22:13	Windows Batch File	5 KB
README.md Open		MD File	3 KB
requirements.tx Edit		Text Document	1 KB
start_cft.bat Print		Windows Batch File	2 KB
💿 start_zoning.bat 🗣 Run as administrator		Windows Batch File	2 KB
zoning.py 7-Zip	>	PY File	33 KB
zoning.ui CRC SHA	>	UI File	24 KB

The script will download and install the needed modules. When completed the terminal will return the message "Press any key to close"

Installation (4 / 4)

📒 data

Contents of the CFT installation folder:

📜 icon	data – contains test data
📒 styles	Icon– contains the desktop icon
💏 CFT	styles – contains QGIS color schemes for the CFT outputs
DS cft	
🗋 cft.ui	CFT – desktop launcher shortcut (appears only after running the installation script)
🖻 cft_mpi	qgis_env.bat – environmental variables needed to run the tool (appears only after running the installation script)
cft_ubuntu.sh	install-cft-linux.sh – install CFT in generic Linux environment
🐞 debug_cft	install-cft-ubuntu.sh – install CFT in Ubuntu OS
debug_zoning	install-qgis-modules.bat – install required Python modules to QGIS
Diffunctions	
install-cft-linux.sh	README.md – installation instructions
install-cft-ubuntu.sh	start_cft.bat – run forecasting tool with debugger terminal
💿 install-qgis-modules	start_zoning.bat – run forecasting tool with debugger terminal
🗞 qgis_env	start_verification.bat – run verification tool with debugger terminal
🕅 README	
requirements	
🗋 start.ui	
🐁 start_cft	
🐁 start_verification	
start_zoning	
🛸 startup	
DS startup	
DS verification	
verification.ui	
DS zoning	
🗋 zoning.ui	

Predictors

The CFT accepts predictor data in NetCDF and CSV/Text formats. The <u>data must be in</u> <u>monthly time steps</u>, and should be one parameter per file.

The preferred source of predictor NetCDF data is the IRI Data Library, some links provided below:

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.sst/#expert SOURCES .NOAA .NCDC .ERSST .version5 .sst T (Dec 1960-2021) RANGEEDGES T 12 STEP

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/.CDAS-1/.MONTHLY/.Intrinsic/#expert SOURCES .NOAA .NCEP-NCAR .CDAS-1 .MONTHLY .Intrinsic .PressureLevel .phi P (850) VALUES T (Dec 1960-2021) RANGEEDGES T 12 STEP

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/.CDAS-1/.MONTHLY/Intrinsic/.MSL/.pressure/#expert SOURCES .NOAA .NCEP-NCAR .CDAS-1 .MONTHLY Intrinsic .MSL .pressure T (Dec 1960-2021) RANGEEDGES T 12 STEP

Predictors

The CFT accepts predictor data in NetCDF and CSV/Text formats. The **data must be in monthly time steps**, and should be one parameter per file.

CSV and Text data must be in the format below: The <u>Tokyo Climate Centre</u> and other sources provide indices in the required format:

Text data (.txt extension)

AUG SEP DEC FEB APR MAY JUN JUL 0CT NOV 1950 -0.44 -0.92 -0.47 0.25 -0.03 -1.01 -1.18 -1.14 -0.91 -0.62 -0.50 -0.45 1951 -0.75 -0.01 0.16 -0.04 0.24 -0.93 -1.26 -1.23 -0.40 -0.36 0.07 -0.37 1952 -0.63 -0.34 -0.08 0.56 0.03 -0.82 -1.63 -1.45 -1.01 -0.82 -0.22 -0.26 1953 -0.33 -0.37 0.08 0.06 0.79 -0.57 -1.11 -0.89 -0.38 -0.36 -0.02 -0.30 1954 -1.09 -0.51 -0.18 0.67 0.32 -0.91 -1.67 -1.23 -1.28 -1.06 -0.52 -0.44 1955 -0.97 -0.73 -0.38 0.32 -0.43 -1.14 -1.33 -0.95 -1.23 -0.98 -0.19 -0.11 1956 -0.41 -0.30 -0.39 -0.07 -0.34 -1.18 -1.78 -1.26 -1.15 -0.89 -0.71 -0.57 1957 -1.11 -0.88 -0.28 0.28 0.10 -1.16 -1.55 -1.32 -0.72 -0.25 -0.88 -0.66 1958 -1.04 -0.71 -0.34 -0.23 -0.12 -1.42 -2.05 -1.57 -1.46 -0.98 -0.53 -0.34 1959 -0.16 -0.63 -0.56 0.02 -0.69 -1.52 -1.76 -1.63 -0.97 -0.80 -0.72 -0.90 1960 -0.97 -0.31 -0.42 -0.35 -0.73 -1.19 -1.64 -1.66 -0.95 -1.14 -1.12 -1.04 1961 -0.74 -0.53 0.19 -0.02 -0.34 -0.51 -0.32 -0.16 0.30 1.18 0.35 -0.12 1962 -0.05 0.09 0.12 0.57 -0.23 -0.94 -1.14 -0.97 -0.15 -0.44 -0.34 -0.40

CSV data (.csv extension)

Year, JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC 1950, -0.44, -0.92, -0.47, ,0.25, -0.03, -1.01, -1.18, -1.14, -0.91, -0.62, -0.50, -0.45 1951, -0.75, -0.01, ,0.16, -0.04, ,0.24, -0.93, -1.26, -1.23, -0.40, -0.36, ,0.07, -0.37 1952, -0.63, -0.34, -0.08, ,0.56, ,0.03, -0.82, -1.63, -1.45, -1.01, -0.82, -0.22, -0.26 1953, -0.33, -0.37, ,0.08, ,0.06, ,0.79, -0.57, -1.11, -0.89, -0.38, -0.36, -0.02, -0.30 1954, -1.09, -0.51, -0.18, ,0.67, ,0.32, -0.91, -1.67, -1.23, -1.28, -1.06, -0.52, -0.44 1955, -0.97, -0.73, -0.38, ,0.32, -0.43, -1.14, -1.33, -0.95, -1.23, -0.98, -0.19, -0.11 1956, -0.41, -0.30, -0.39, -0.07, -0.34, -1.18, -1.78, -1.26, -1.15, -0.89, -0.71, -0.57 1957, -1.11, -0.88, -0.28, ,0.28, ,0.10, -1.16, -1.55, -1.32, -0.72, -0.25, -0.88, -0.66 1958, -1.04, -0.71, -0.34, -0.23, -0.12, -1.42, -2.05, -1.57, -1.46, -0.98, -0.53, -0.34 1959, -0.16, -0.63, -0.56, ,0.02, -0.69, -1.52, -1.76, -1.63, -0.97, -0.80, -0.72, -0.90 1960, -0.97, -0.31, -0.42, -0.35, -0.73, -1.19, -1.64, -1.66, -0.95, -1.14, -1.12, -1.04

Predictors

The CFT accepts predictor data in NetCDF and CSV/Text formats. The <u>data must be in</u> <u>monthly time steps</u>, and should be one parameter per file.

NB:

Predictor data should cover the <u>year before the training period</u> up to the most recent month.

For instance: if training period is 1971-2000 and predictor month being used is July to predict OND 2022, the predictor data should cover July <u>1970</u> to July 2022.

Predictand

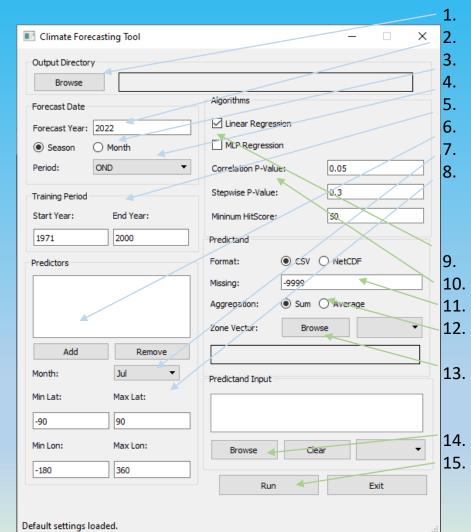
Predictand data must be NetCDF or CSV formats, and must be in monthly time steps.

NetCDF data should be single parameter (e.g. rainfall) in monthly time steps.

CSV data should contain the name of the point (station), its Latitude, Longitude, and monthly values for each year in the following format.

CSV data (.csv extension)

ID,Lat,Lon,Year,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec PEMBA, -12.983, 40.533, 1981, 52.1, 150.9, 95.9, 41.5, 42.5, 19.2, 5.1, 3.6, 1.8, 11.0, 11.6, 109.9 PEMBA, -12.983, 40.533, 1982, 90.2, 239.6, 111.9, 71.3, 28.4, 7.0, 6.9, 12.0, 1.3, 35.4, 76.1, 173.9 PEMBA, -12.983, 40.533, 1983, 221.9, 91.4, 209.2, 73.6, 45.5, 14.3, 5.2, 7.9, 1.6, 7.9, 19.4, 80.7 PEMBA, -12.983, 40.533, 1984, 165.1, 157.1, 152.6, 101.2, 32.3, 26.2, 14.5, 7.8, 1.2, 13.5, 21.4, 223.1 PEMBA, -12.983, 40.533, 1985, 114.0, 185.5, 104.8, 140.0, 18.2, 11.7, 19.3, 10.5, 1.7, 8.0, 70.2, 99.7 PEMBA, -12.983, 40.533, 1986, 189.3, 197.3, 130.9, 102.6, 16.9, 10.3, 9.3, 5.9, 1.4, 23.2, 66.6, 224.5 PEMBA, -12.983, 40.533, 1987, 130.0, 114.0, 146.8, 45.4, 21.1, 7.9, 9.0, 7.8, 1.4, 7.9, 62.0, 11.4 PEMBA, -12.983, 40.533, 1988, 152.8, 173.6, 66.3, 77.0, 35.3, 6.0, 5.3, 9.8, 1.4, 6.4, 74.0, 68.9 PEMBA, -12.983, 40.533, 1989, 244.7, 141.7, 259.0, 82.4, 107.5, 13.0, 13.4, 14.2, 1.4, 5.8, 48.6, 175.5 PEMBA, -12.983, 40.533, 1990, 81.1, 233.9, 97.4, 144.0, 28.9, 5.3, 22.8, 12.8, 1.5, 12.0, 13.8, 102.3 PEMBA, -12.983, 40.533, 1991, 117.9, 133.4, 392.5, 138.1, 38.2, 8.6, 22.8, 6.5, 1.5, 7.1, 34.8, 223.8 PEMBA, -12.983, 40.533, 1992, 107.1, 158.2, 137.8, 129.2, 35.0, 12.5, 18.6, 6.3, 1.7, 11.0, 86.1, 20.0 PEMBA, -12.983, 40.533, 1993, 201.0, 149.8, 311.5, 101.8, 15.3, 9.7, 13.7, 9.8, 1.4, 5.2, 26.7, 75.0 PEMBA, -12.983, 40.533, 1994, 194.2, 216.0, 104.4, 61.7, 11.8, 6.7, 6.0, 7.0, 1.5, 7.0, 11.5, 111.4 PEMBA, -12.983, 40.533, 1995, 198.4, 216.7, 184.1, 73.0, 38.7, 5.3, 5.2, 15.4, 1.6, 6.4, 8.9, 118.7 PEMBA, -12.983, 40.533, 1996, 174.9, 204.4, 76.2, 41.5, 34.0, 7.9, 11.1, 6.0, 1.2, 9.6, 6.7, 87.4


Loading CFT

Double/click on the launcher shortcut \sum_{crt} to open the launcher.

From the launcher, you can click on the button for each tool to open it

				Clim	Climate Forecasting Toolbox — 🗆 🗙							
					Zoning	Forecasting	Verification					
CFT Zoning Output Directo			-	- • ×	Climate For	ecasting Tool	-	o x	CFT Verification To Output Directory	ool		– 🗆 X
Browse					Output Directo	pry			Browse			
Input Geospat					Browse				Drowse	70		
Browse					Forecast Date		Algorithms		Forecast Vector File			
Zoning Option	ns L		Climatology		Forecast Year	: 2022	C Linear Regression		Browse			
Interpolation:		🔿 Linear	Climatological reference		 Season 	O Month	MLP Regression		Parameter:	~		
Max. PEV	70		Start Year: 198	31	Period:	OND	Correlation P-Value: 0.05		Climatological Data			
Gridsize:	0.05		End Year: 20	0	Training Perio	d	Stepwise P-Value: 0.3		Browse			
					Start Year:	End Year:	Mininum HitScore: 50		Parameter:	~		
Rotation	varimax	~	No. of Zones:		1971	2000	Predictand		Verification Param	eters	Climatological Referen	Ice
Climate Eleme	nt properties		Climate Element data		Predictors		Format: O CSV O NetCDF	-		2022		
Format:	O CSV	O NC					Missing: -9999		Forecast Year:		Start Year: 198	1
Missing:	-9999						Aggregation: O Sum O Average		Seasonal	O Monthly	End Year: 201	0
Function.	O Sum	O Mean						C .	O Sum	O Average	Format:	CSV ONC
Period:	OND	~	Browse Clear				Zone Vector: Browse	~	Period:	OND ~		
Fellou.	OND				Add	Remove						Run
				Run	Month:	Jul ~	Predictand Input		Default settings loade	4		
				Run	Min Lat:	Max Lat:	1		Delault settings loade	d.		(h.
Default settings	loaded.			.d	-90	90						
					Min Lon:	Max Lon:						
							Browse Clear	~				
					-180	360	Run	Exit				
					/		Kun	Exit				
					Default	landed						
					Default settings							

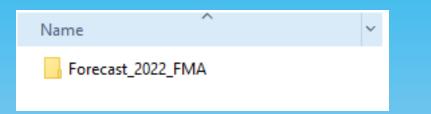
Run the forecasting tool from the launcher (or by double-clicking on the start-cft.bat script)

Select output directory where outputs will be delivered Indicate year to be forecasted Select forecast period type (Season or Month) Select forecast period Update the training period if necessary Add NetCDF/CSV/Txt file(s) to be used as predictors Select the month to be used from the predictor files If you would like to focus your predictor on a specific area, you can indicate the extent (min and max Lat/Lon)

Select the regression algorithm(s) to use (Linear or MLP or both) Correlation and Stepwise Selection P-Values can be maintained as default Indicate the figure used as missing values in your predictant (station) data Indicate the aggregation function to be used on the predictant, use Cumulation for rainfall and Average for temperature data Browse to the Zone vector file (geojson format) to be used if you want forecast to be classified per zone, and select the attribute which will be used for naming the zones

Browse to the CSV files which will be used as predictant (station) data

Click on Run to generate the forecast


Climate Foreca	sting Tool	- 🗆 X						
Output Directory								
Browse	C:/Users/Moitlhobo	ogi/Documents/outputs						
Forecast Date		Algorithms						
Forecast Year: 2	022	Linear Regression						
Season) Month	MLP Regression						
Period: F	MA 👻	Correlation P-Value: 0.05						
Training Period		Stepwise P-Value: 0.3						
Start Year: End Year:		Mininum HitScore: 50						
1981	2010	Predictand						
Predictors Format: O CSV NetCDF								
NOAA_ERSST_D NOAA_P850_De TCC_IOD_1991-7 TCC_IOD_anom	2021.csv	Missing: -9999 Aggregation: Sum O Average Zone Vector: Browse						
Add	Remove							
Month:	Dec 🔹	Predictand Input						
Min Lat:	Max Lat:	chirps_monthly_1981_2020_BWA.csv						
-90	90							
Min Lon:	Max Lon:	Browse Clear 🔻						
-180	360							
		Run Exit						

- Once the forecast is completed, a message will appear on the status box indicating "Done in xxxx seconds"
- The amount of time taken to generate a forecast depends mainly on 4 factors
 - 1. Number of predictors
 - 2. Number of stations
 - 3. Algorithms selected
 - 4. CPU count of your computer (CFT using 90% of your CPU)
- To estimate the runtime, Linear regression (LR) for one station and one predictor takes about 3 seconds. MLP regression (MLP) for one station and one predictor takes about 57 seconds.
- For example: with two predictors to forecast 60 stations using both LR and MLP, it will require about 2 x 60 x (57 + 3) = 7 200s = 2hrs

If you have an 8 core CPU then 7 cores will be used by CFT to reduce the time to about 7200 / 7 = 1028s = **17 minutes**


In the output directory a forecast output folder will be created in the following naming structure:

Forecast_<fcstYear>_<fcstPeriod>

In the forecast output directory, the following subfolders will be created:

- Correlation this is where correlation basin maps and basin summary files will be delivered, these will be used as inputs to the regression
- Regression this is where regression information files will be delivered
- Forecast this is where the forecast graphs, maps and summary files will be delivered

Correlation outputs:

The **Correlation** folder contains the following files for each NetCDF predictor:

- correlation-p-values.tif raster map of p-values
- correlation-basins.tif raster map of the basins, pixel value is the basin ID
- correlation-basin-avgs.csv summary of basins detected (where p-values are <= 0.05)

 \sim

 forward-selection.csv output of forward selection algorithm on eliminating basins with less significance (where p-values are <= 0.03)

Name

NOAA_ERSST_Dec_1960_2021_sst_Dec_1981-2010_FRANCISTOWN_correlation-basin-avgs.csv

- NOAA_ERSST_Dec_1960_2021_sst_Dec_1981-2010_FRANCISTOWN_correlation-maps.nc
- NOAA_ERSST_Dec_1960_2021_sst_Dec_1981-2010_FRANCISTOWN_forward-selection.csv
- NOAA_ERSST_Dec_1960_2021_sst_Dec_1981-2010_GABORONE_correlation-basin-avgs.csv

NB:

CSV/Text predictors are already areas of high correlation, hence no correlation outputs will be computed by CFT for these formats.

Correlation outputs:

The **Regression > LR** folder contains the following files for each predictor:

- correlation-formula.csv linear regression formula used
- correlation-graph.png plot of the linear regression formula (only for single basins)
- forecast_matrix.csv yearly forecast compared to actual values
- score-contingency-table.csv contingency table used to derive the scores
- score-statistics.csv score summary for the station

TCC_IOD_1991-2021_TCC_IOD_1991-2021_Dec_1981-2010_FRANCISTOWN_correlation-formula.csv
 TCC_IOD_1991-2021_TCC_IOD_1991-2021_Dec_1981-2010_FRANCISTOWN_correlation-graph.png
 TCC_IOD_1991-2021_TCC_IOD_1991-2021_Dec_1981-2010_FRANCISTOWN_FMA_forecast_matrix.csv
 TCC_IOD_1991-2021_TCC_IOD_1991-2021_Dec_1981-2010_FRANCISTOWN_score-contingency-table.csv
 TCC_IOD_1991-2021_TCC_IOD_1991-2021_Dec_1981-2010_FRANCISTOWN_score-statistics.csv

NB:

The correlation-graph.png is plotted only where the predictor has a single correlation basin.

Correlation outputs:

The **Regression > MLP** folder contains the following files for each predictor:

- mlpsummary.txt summary of the parameters using for MLP
- correlation-graph.png predictor/predictand relationship plot (only for single basins)
- forecast_matrix.csv yearly forecast compared to actual values
- score-contingency-table.csv contingency table used to derive the scores
- score-statistics.csv score summary for the station

TCC_IOD_1991-2020_TCC_IOD_1991-2020_Dec_1971-2000_Diphala_correlation-graph.png
 TCC_IOD_1991-2020_TCC_IOD_1991-2020_Dec_1971-2000_Diphala_FMA_forecast_matrix.csv
 TCC_IOD_1991-2020_TCC_IOD_1991-2020_Dec_1971-2000_Diphala_FMA_mlpsummary.txt
 TCC_IOD_1991-2020_TCC_IOD_1991-2020_Dec_1971-2000_Diphala_score-contingency-table.csv
 TCC_IOD_1991-2020_TCC_IOD_1991-2020_Dec_1971-2000_Diphala_score-statistics.csv

The **Forecast** folder contains the following files for each predictor:

- station_members.csv forecasts members (predictor+algorithm) generated for each station
- station_members_selected.csv filtered forecasts members (low skilled members removed)
- forecast.csv list of all forecasts generated for each station, predictor, and regression algorithm
- station-forecast.csv final forecast for each station based on an weighted average consensus
- station-forecast.geojson final forecast for each station (above) in geojson format
- station-forecast.png final forecast for each station (above) in PNG format
- zone_members.csv forecasts members (predictor+algorithm) generated for each station
- zone_members_selected.csv filtered forecasts members (low skilled members removed)
- zone_station-forecast.csv list of all forecasts generated for each station, predictor, and regression algorithm. The zone each station belongs to is also indicated
- zone-forecast.csv final forecast for each zone based on an weighted average consensus
- zone-forecast.geojson final forecast for each zone (above) in geojson format
- zone-forecast.png final forecast for each zone (above) in PNG format
- forecast_graphs_xxx.png forecast graph of each station for each predictor and regression algorithm

MLP selection of best neural architecture (best model):

To select the best neural architecture for the MLP forecast, an iterative process is carried out running from 2 to 21 for the first hidden layer and 0 to 21 for the second hidden layer.

For each iteration the Hit Score (HS) and r^2 are computed, and the iteration resulting in the highest combination of (HS+1) * r^2 is selected for the MLP forecast.

This iterative process to select the best MLP model results in the long processing time for MLP.

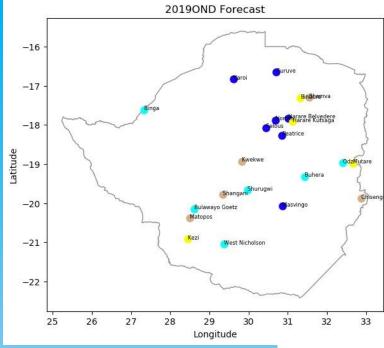
Selection criteria for final forecast:

To generate a final forecast for a station (or zone), the following criteria is applied using the testing dataset (data after training period):

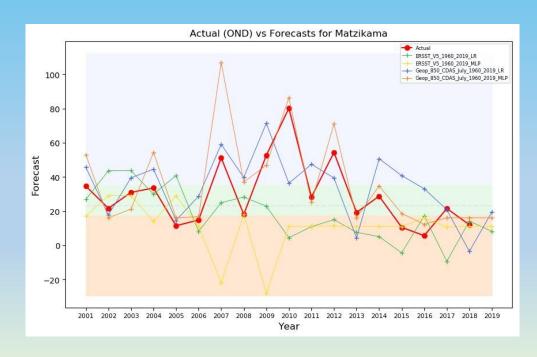
- 1. Only members with significant Probability of Detection (POD) for their forecasted class will be considered, i.e. the highest POD should lie with the forecasted class.
- 2. Only members who meet a set minimum Hit Score (HS) will be considered (default is 50)
- Only Members who meet the two conditions above will be considered for the weighted average to produce a final forecast

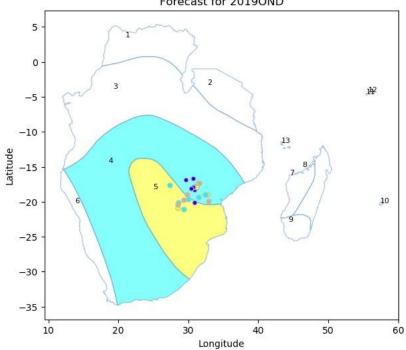
Weighted average

	Member 1	Member 2
Class	2	3
HS	65	55


If for a station (or zone) there are two or more members with hit-scores (HS) above 50 as shown above, then we perform a weighted average (HS used as the weight) to determine the final forecast classification:

Normal Average = (2 + 3) / 2 = 2.5


Weighted average = (2*65 + 3*55)/(65 + 55) = 2.46


```
Final forecast classification = 2
```

Forecast output examples:

Forecast for 2019OND

Follow us on:

Twitter: @AcmadNiamey

facebook <u>Facebook:</u> https://www.facebook.com/ACMAD-470332183044388

Website:

www.acmad.org